skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gerosa, Marco Aurélio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Effectively onboarding newcomers is essential for the success of open source projects. These projects often provide onboarding guidelines in their ‘CONTRIBUTING’ files (e.g., CONTRIBUTING.md on GitHub). These files explain, for example, how to find open tasks, implement solutions, and submit code for review. However, these files often do not follow a standard structure, can be too large, and miss barriers commonly found by newcomers. In this paper, we propose an automated approach to parse these CONTRIBUTING files and assess how they address onboarding barriers. We manually classified a sample of files according to a model of onboarding bar- riers from the literature, trained a machine learning classifier that automatically predicts the categories of each paragraph (precision: 0.655, recall: 0.662), and surveyed developers to investigate their perspective of the predictions’ adequacy (75% of the predictions were considered adequate). We found that CONTRIBUTING files typically do not cover the barriers newcomers face (52% of the analyzed projects missed at least 3 out of the 6 barriers faced by newcomers; 84% missed at least 2). Our analysis also revealed that information about choosing a task and talking with the community, two of the most recurrent barriers newcomers face, are neglected in more than 75% of the projects. We made available our classifier as an online service that analyzes the content of a given CONTRIBUTING file. Our approach may help community builders identify missing information in the project ecosystem they maintain and newcomers can understand what to expect in CONTRIBUTING files. 
    more » « less
  2. Abstract Several Open-Source Software (OSS) projects depend on the continuity of their development communities to remain sustainable. Understanding how developers become inactive or why they take breaks can help communities prevent abandonment and incentivize developers to come back. In this paper, we propose a novel method to identify developers’ inactive periods by analyzing the individual rhythm of contributions to the projects. Using this method, we quantitatively analyze the inactivity of core developers in 18 OSS organizations hosted on GitHub. We also survey core developers to receive their feedback about the identified breaks and transitions. Our results show that our method was effective for identifying developers’ breaks. About 94% of the surveyed core developers agreed with our state model of inactivity; 71% and 79% of them acknowledged their breaks and state transition, respectively. We also show that all core developers take breaks (at least once) and about a half of them (~45%) have completely disengaged from a project for at least one year. We also analyzed the probability of transitions to/from inactivity and found that developers who pause their activity have a ~35 to ~55% chance to return to an active state; yet, if the break lasts for a year or longer, then the probability of resuming activities drops to ~21–26%, with a ~54% chance of complete disengagement. These results may support the creation of policies and mechanisms to make OSS community managers aware of breaks and potential project abandonment. 
    more » « less
  3. null (Ed.)
    Summer of code programs connect students to open source software (OSS) projects, typically during the summer break from school. Analyzing consolidated summer of code programs can reveal how college students, who these programs usually target, can be motivated to participate in OSS, and what onboarding strategies OSS communities adopt to receive these students. In this paper, we study the well-established Google Summer of Code (GSoC) and devise an integrated engagement theory grounded in multiple data sources to explain motivation and onboarding in this context. Our analysis shows that OSS communities employ several strategies for planning and executing student participation, socially integrating the students, and rewarding student’s contributions and achievements. Students are motivated by a blend of rewards, which are moderated by external factors. We presented these rewards and the motivation theory to students who had never participated in a summer of code program and collected their shift in motivation after learning about the theory. New students can benefit from the former students' experiences detailed in our results, and OSS stakeholders can leverage both the insight into students’ motivations for joining such programs as well as the onboarding strategies we identify to devise actions to attract and retain newcomers. 
    more » « less